Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 67
1.
Res Sq ; 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38343868

Background: Exposure to extreme heat impacts millions of people worldwide and outdoor workers are among the populations most affected by high temperatures. Heat stress induces several biological responses in humans, including the production of heat shock proteins (HSP) and antibodies against HSP (anti-HSP) which may play a central role in the body's cellular response to a hot environment. Objective: This longitudinal study investigated the impact of high temperatures and humidity on the presence of HSP70 and anti-HSP70 and examined relationships with markers of kidney function in an at-risk workforce under conditions of extreme heat and exertion in Guatemala. Methods: We collected ambient temperature and relative humidity data as well as biomarkers and clinical data from 40 sugarcane workers at the start and the end of a 6-month harvest. We used generalized mixed-effects models to estimate temperature effects on HSP70 and anti-HSP70 levels. In addition, we examined trends between HSP70 and anti-HSP70 levels and markers of kidney function across the harvest. Results: At the end of the harvest, temperatures were higher, and workers had, on average, higher levels of HSP70 and anti-HSP70 compared to the beginning of the season. We observed significant increasing trends with temperature indices and HSP70 levels. Maximum temperature was associated with HSP70 increments after controlling for age, systolic and diastolic blood pressure (ß: 0.21, 95% Confidence Interval: 0.09, 0.33). Kidney function decline across the harvest was associated with both higher levels of anti-HSP70 levels at the end of the harvest as well as greater increases in anti-HSP70 levels across the harvest. Conclusions: These results suggest that workplace heat exposure may increase the production of HSP70 and anti-HSP70 levels and that there may be a relationship between increasing anti-HSP70 antibodies and the development of renal injury. HSP70 holds promise as a biomarker of heat stress in exposed populations.

2.
Free Radic Biol Med ; 212: 49-64, 2024 02 20.
Article En | MEDLINE | ID: mdl-38141891

Releasing unilateral ureteral obstruction (RUUO) is the gold standard for decreasing renal damage induced during unilateral ureteral obstruction (UUO); however, the complete recovery after RUUO depends on factors such as the time and severity of obstruction and kidney contralateral compensatory mechanisms. Interestingly, previous studies have shown that kidney damage markers such as oxidative stress, inflammation, and apoptosis are present and even increase after removal obstruction. To date, previous therapeutic strategies have been used to potentiate the recovery of renal function after RUUO; however, the mechanisms involving renal damage reduction are poorly described and sometimes focus on the recovery of renal functionality. Furthermore, using natural antioxidants has not been completely studied in the RUUO model. In this study, we selected sulforaphane (SFN) because it activates the nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that induces an antioxidant response, decreasing oxidative stress and inflammation, preventing apoptosis. Thus, we pre-administrated SFN on the second day after UUO until day five, where we released the obstruction on the three days after UUO. Then, we assessed oxidative stress, inflammation, and apoptosis markers. Interestingly, we found that SFN administration in the RUUO model activated Nrf2, inducing its translocation to the nucleus to activate its target proteins. Thus, the Nrf2 activation upregulated glutathione (GSH) content and the antioxidant enzymes catalase, glutathione peroxidase (GPx), and glutathione reductase (GR), which reduced the oxidative stress markers. Moreover, the improvement of antioxidant response by SFN restored S-glutathionylation in the mitochondrial fraction. Activated Nrf2 also reduced inflammation by lessening the nucleotide-binding domain-like receptor family pyrin domain containing 3 and interleukin 1ß (IL-1ß) production. Reducing oxidative stress and inflammation prevented apoptosis by avoiding caspase 3 cleavage and increasing B-cell lymphoma 2 (Bcl2) levels. Taken together, the obtained results in our study showed that the upregulation of Nrf2 by SFN decreases oxidative stress, preventing inflammation and apoptosis cell death during the release of UUO.


Antioxidants , Sulfoxides , Ureteral Obstruction , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Kidney/metabolism , Isothiocyanates/pharmacology , Inflammation/metabolism , Apoptosis , Anti-Inflammatory Agents/pharmacology
3.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article En | MEDLINE | ID: mdl-37958859

Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)-stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential strategies for preventing CRS type 4.


Cardio-Renal Syndrome , Renal Insufficiency, Chronic , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Mitochondria/metabolism , Nucleotidyltransferases/metabolism , Receptors, Immunologic/metabolism , Alarmins/metabolism , Chemokines/metabolism , Renal Insufficiency, Chronic/metabolism
4.
PeerJ ; 11: e16132, 2023.
Article En | MEDLINE | ID: mdl-37786577

Background: Recent studies have suggested that metabolic syndrome (MS) encompasses a group of risk factors for developing chronic kidney disease (CKD). This work aimed to evaluate the antioxidant and anti-inflammatory effects of allicin in the kidney from an experimental model of MS. Methods: Male Wistar rats (220-250 g) were used, and three experimental groups (n = 6) were formed: control (C), metabolic syndrome (MS), and MS treated with allicin (16 mg/Kg/day, gastric gavage) (MS+A). MS was considered when an increase of 20% in at least three parameters (body weight, systolic blood pressure (SBP), fasting blood glucose (FBG), or dyslipidemia) was observed compared to the C group. After the MS diagnosis, allicin was administered for 30 days. Results: Before the treatment with allicin, the MS group showed more significant body weight gain, increased SBP, and FBG, glucose intolerance, and dyslipidemia. In addition, increased markers of kidney damage in urine and blood. Moreover, the MS increased oxidative stress and inflammation in the kidney compared to group C. The allicin treatment prevented further weight gain, reduced SBP, FBG, glucose intolerance, and dyslipidemia. Also, markers of kidney damage in urine and blood were decreased. Further, the oxidative stress and inflammation were decreased in the renal cortex of the MS+A compared to the MS group. Conclusion: Allicin exerts its beneficial effects on the metabolic syndrome by considerably reducing systemic and renal inflammation as well as the oxidative stress. These effects were mediated through the Nrf2 pathway. The results suggest allicin may be a therapeutic alternative for treating kidney injury induced by the metabolic syndrome risk factors.


Glucose Intolerance , Metabolic Syndrome , Renal Insufficiency, Chronic , Rats , Animals , Male , Antioxidants/pharmacology , Metabolic Syndrome/drug therapy , Glucose Intolerance/drug therapy , Rats, Wistar , Kidney , Renal Insufficiency, Chronic/drug therapy , Body Weight , Models, Theoretical , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology
5.
Antioxidants (Basel) ; 12(8)2023 Aug 10.
Article En | MEDLINE | ID: mdl-37627587

The incidence of kidney disease is increasing worldwide. Acute kidney injury (AKI) can strongly favor cardio-renal syndrome (CRS) type 3 development. However, the mechanism involved in CRS development is not entirely understood. In this sense, mitochondrial impairment in both organs has become a central axis in CRS physiopathology. This study aimed to elucidate the molecular mechanisms associated with cardiac mitochondrial impairment and its role in CRS development in the folic acid-induced AKI (FA-AKI) model. Our results showed that 48 h after FA-AKI, the administration of N-acetyl-cysteine (NAC), a mitochondrial glutathione regulator, prevented the early increase in inflammatory and cell death markers and oxidative stress in the heart. This was associated with the ability of NAC to protect heart mitochondrial bioenergetics, principally oxidative phosphorylation (OXPHOS) and membrane potential, through complex I activity and the preservation of glutathione balance, thus preventing mitochondrial dynamics shifting to fission and the decreases in mitochondrial biogenesis and mass. Our data show, for the first time, that mitochondrial bioenergetics impairment plays a critical role in the mechanism that leads to heart damage. Furthermore, NAC heart mitochondrial preservation during an AKI event can be a valuable strategy to prevent CRS type 3 development.

6.
Biomolecules ; 13(5)2023 04 30.
Article En | MEDLINE | ID: mdl-37238651

The presence of obesity and metabolic syndrome is strongly linked with chronic kidney disease (CKD), but the mechanisms responsible for the association are poorly understood. Here, we tested the hypothesis that mice with obesity and metabolic syndrome might have increased susceptibility to CKD from liquid high fructose corn syrup (HFCS) by favoring the absorption and utilization of fructose. We evaluated the pound mouse model of metabolic syndrome to determine if it showed baseline differences in fructose transport and metabolism and whether it was more susceptible to chronic kidney disease when administered HFCS. Pound mice have increased expression of fructose transporter (Glut5) and fructokinase (the limiting enzyme driving fructose metabolism) associated with enhanced fructose absorption. Pound mice receiving HFCS rapidly develop CKD with increased mortality rates associated with intrarenal mitochondria loss and oxidative stress. In pound mice lacking fructokinase, the effect of HFCS to cause CKD and early mortality was aborted, associated with reductions in oxidative stress and fewer mitochondria loss. Obesity and metabolic syndrome show increased susceptibility to fructose-containing sugars and increased risk for CKD and mortality. Lowering added sugar intake may be beneficial in reducing the risk for CKD in subjects with metabolic syndrome.


High Fructose Corn Syrup , Kidney Diseases , Metabolic Syndrome , Mice , Animals , Metabolic Syndrome/complications , High Fructose Corn Syrup/adverse effects , Mice, Obese , Dietary Sucrose/adverse effects , Dietary Sucrose/metabolism , Obesity/etiology , Fructose/metabolism , Kidney Diseases/chemically induced , Fructokinases
7.
Antioxidants (Basel) ; 12(5)2023 Apr 28.
Article En | MEDLINE | ID: mdl-37237888

There is increasing evidence that either ingested or produced fructose may have a role in metabolic syndrome. While not commonly considered a criterion for metabolic syndrome, cardiac hypertrophy is often associated with metabolic syndrome, and its presence carries increased cardiovascular risk. Recently it has been shown that fructose and fructokinase C (KHK) can be induced in cardiac tissue. Here we tested whether diet-induced metabolic syndrome causes heart disease associated with increased fructose content and metabolism and whether it can be prevented with a fructokinase inhibitor (osthole). Male Wistar rats were provided a control diet (C) or high fat/sugar diet for 30 days (MS), with half of the latter group receiving osthol (MS+OT, 40 mg/kg/d). The Western diet increased fructose, uric acid, and triglyceride concentrations in cardiac tissue associated with cardiac hypertrophy, local hypoxia, oxidative stress, and increased activity and expression of KHK in cardiac tissue. Osthole reversed these effects. We conclude that the cardiac changes in metabolic syndrome involve increased fructose content and its metabolism and that blocking fructokinase can provide cardiac benefit through the inhibition of KHK with modulation of hypoxia, oxidative stress, hypertrophy, and fibrosis.

8.
Med Oncol ; 40(3): 104, 2023 Feb 23.
Article En | MEDLINE | ID: mdl-36821013

Glioblastoma (GBM) is the most frequent brain cancer and more lethal than other cancers. Characteristics of this cancer are its high drug resistance, high recurrence rate and invasiveness. Invasiveness in GBM is related to overexpression of matrix metalloproteinases (MMPs) which are mediated by wnt/ß-catenin and induced by the activation of signaling pathways extracellularly activated by the cytokine neuroleukin (NLK) in cancer stem cells (CSC). Therefore, in this work we evaluated the effect of the tetrose saccharide, erythrose (Ery), a NLK inhibitor of invasiveness and drug sensitization in glioblastoma stem cells (GSC). GSC were obtained from parental U373 cell line by a CSC phenotype enrichment protocol based on microenvironmental stress conditions such as hypoxia, hipoglycemia, drug exposition and serum starvation. Enriched fraction of GSC overexpressed the typical markers of brain CSC: low CD133+ and high CD44; in addition, epithelial to mesenchyme transition (EMT) markers and MMPs were increased several times in GSC vs. U373 correlating with higher invasiveness, elongated and tubular mitochondrion and temozolomide (TMZ) resistance. IC50 of Ery was found at nM concentration and at 24 h induced a severe diminution of EMT markers, MMPs and invasiveness in GSC. Furthermore, the phosphorylation pattern of NLK after Ery exposition also was affected. In addition, when Ery was administered to GSC at subIC50, it was capable of reverting TMZ resistance at concentrations innocuous to non-tumor cancer cells. Moreover, Ery added daily induced the death of all GSC. Those findings indicated that the phytodrug Ery could be used as adjuvant therapy in GBM.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Tetroses/metabolism , Tetroses/pharmacology , Tetroses/therapeutic use , Cell Line, Tumor , Temozolomide/therapeutic use , Drug Resistance, Neoplasm , Brain Neoplasms/pathology , Neoplastic Stem Cells/pathology , Protein Serine-Threonine Kinases/metabolism
9.
Biomolecules ; 13(2)2023 02 01.
Article En | MEDLINE | ID: mdl-36830641

Heat shock protein 70 (HSP70) production is a stress-generated cellular response with high interspecies homology. HSP70 has both chaperone and cytokine functions and may induce, depending on the context, tolerogenic anti-inflammatory reactivity or immunogenic and autoimmune reactivity. Intracellular (chaperoning transit of antigens to MHC in antigen-presenting cells) and extracellular HSP70-related effects are associated with hypertension, which is an inflammatory condition recognized as the most important risk factor for cardiovascular disease mortality. Here, we review (a) the relationship between HSP70, inflammation and immune reactivity, (b) clinical evidence relating to stress, HSP70 and anti-HSP70 reactivity with primary hypertension and (c) experimental data showing that salt-sensitive hypertension is associated with delayed hypersensitivity to HSP70. This is a consequence of anti-HSP70 reactivity in the kidneys and may be prevented and corrected by the T-cell-driven inhibition of kidney inflammation triggered by specific epitopes of HSP70. Finally, we discuss our postulate that lifelong stress signals and danger-associated molecular patterns stimulate HSP-70 and individual genetic and epigenetic characteristics determine whether the HSP70 response would drive inflammatory immune reactivity causing hypertension or, alternatively, would drive immunomodulatory responses that protect against hypertension.


HSP70 Heat-Shock Proteins , Hypertension , Humans , HSP70 Heat-Shock Proteins/metabolism , Hypertension/metabolism , Cytokines/metabolism , Kidney/metabolism , Inflammation/metabolism
10.
Nephrol Dial Transplant ; 38(1): 41-48, 2023 Jan 23.
Article En | MEDLINE | ID: mdl-34473287

Climate change should be of special concern for the nephrologist, as the kidney has a critical role in protecting the host from dehydration, but it is also a favorite target of heat stress and dehydration. Here we discuss how rising temperatures and extreme heat events may affect the kidney. The most severe presentation of heat stress is heat stroke, which can result in severe electrolyte disturbance and both acute and chronic kidney disease (CKD). However, lesser levels of heat stress also have multiple effects, including exacerbating kidney disease and precipitating cardiovascular events in subjects with established kidney disease. Heat stress can also increase the risk for kidney stones, cause multiple electrolyte abnormalities and induce both acute and chronic kidney disease. Recently there have been multiple epidemics of CKD of uncertain etiology in various regions of the world, including Mesoamerica, Sri Lanka, India and Thailand. There is increasing evidence that climate change and heat stress may play a contributory role in these conditions, although other causes, including toxins, could also be involved. As climate change worsens, the nephrologist should prepare for an increase in diseases associated with heat stress and dehydration.


Heat Stress Disorders , Nephrology , Renal Insufficiency, Chronic , Humans , Climate Change , Dehydration/complications , Renal Insufficiency, Chronic/complications , Kidney , Heat Stress Disorders/complications
11.
Antioxidants (Basel) ; 11(11)2022 Nov 06.
Article En | MEDLINE | ID: mdl-36358567

Chronic kidney disease (CKD) prevalence is constantly increasing, and dyslipidemia in this disease is characteristic, favoring cardiovascular events. However, the mechanisms of CKD dyslipidemia are not fully understood. The use of curcumin (CUR) in CKD models such as 5/6 nephrectomy (5/6Nx) has shown multiple beneficial effects, so it has been proposed to correct dyslipidemia without side effects. This work aimed to characterize CUR's potential therapeutic effect on dyslipidemia and alterations in lipid metabolism and mitochondrial ß-oxidation in the liver and kidney in 5/6Nx. Male Wistar rats were subjected to 5/6Nx and progressed by 4 weeks; meanwhile, CUR (120 mg/kg) was administered for weeks 5 to 8. Our results showed that CUR reversed the increase in liver and kidney damage and hypertriglyceridemia induced by 5/6Nx. CUR also reversed mitochondrial membrane depolarization and ß-oxidation disorders in the kidney and the increased lipid uptake and the high levels of proteins involved in fatty acid synthesis in the liver and kidney. CUR also decreased lipogenesis and increased mitochondrial biogenesis markers in the liver. Therefore, we concluded that the therapeutic effect of curcumin on 5/6Nx hypertriglyceridemia is associated with the restoration of renal mitochondrial ß-oxidation and the reduction in lipid synthesis and uptake in the kidneys and liver.

12.
Antioxidants (Basel) ; 11(10)2022 Sep 20.
Article En | MEDLINE | ID: mdl-36290577

Unilateral ureteral obstruction (UUO) is an animal rodent model that allows the study of obstructive nephropathy in an accelerated manner. During UUO, tubular damage is induced, and alterations such as oxidative stress, inflammation, lipid metabolism, and mitochondrial impairment favor fibrosis development, leading to chronic kidney disease progression. Sulforaphane (SFN), an isothiocyanate derived from green cruciferous vegetables, might improve mitochondrial functions and lipid metabolism; however, its role in UUO has been poorly explored. Therefore, we aimed to determine the protective effect of SFN related to mitochondria and lipid metabolism in UUO. Our results showed that in UUO SFN decreased renal damage, attributed to increased mitochondrial biogenesis. We showed that SFN augmented peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and nuclear respiratory factor 1 (NRF1). The increase in biogenesis augmented the mitochondrial mass marker voltage-dependent anion channel (VDAC) and improved mitochondrial structure, as well as complex III (CIII), aconitase 2 (ACO2) and citrate synthase activities in UUO. In addition, lipid metabolism was improved, observed by the downregulation of cluster of differentiation 36 (CD36), sterol regulatory-element binding protein 1 (SREBP1), fatty acid synthase (FASN), and diacylglycerol O-acyltransferase 1 (DGAT1), which reduces triglyceride (TG) accumulation. Finally, restoring the mitochondrial structure reduced excessive fission by decreasing the fission protein dynamin-related protein-1 (DRP1). Autophagy flux was further restored by reducing beclin and sequestosome (p62) and increasing B-cell lymphoma 2 (Bcl2) and the ratio of microtubule-associated proteins 1A/1B light chain 3 II and I (LC3II/LC3I). These results reveal that SFN confers protection against UUO-induced kidney injury by targeting mitochondrial biogenesis, which also improves lipid metabolism.

13.
Metabolites ; 12(10)2022 Oct 02.
Article En | MEDLINE | ID: mdl-36295838

Kidney diseases encompass many pathologies, including obstructive nephropathy (ON), a common clinical condition caused by different etiologies such as urolithiasis, prostatic hyperplasia in males, tumors, congenital stenosis, and others. Unilateral ureteral obstruction (UUO) in rodents is an experimental model widely used to explore the pathophysiology of ON, replicating vascular alterations, tubular atrophy, inflammation, and fibrosis development. In addition, due to the kidney's high energetic demand, mitochondrial function has gained great attention, as morphological and functional alterations have been demonstrated in kidney diseases. Here we explore the kidney mitochondrial proteome differences during a time course of 7, 14, and 21 days after the UUO in rats, revealing changes in proteins involved in three main metabolic pathways, oxidative phosphorylation (OXPHOS), the tricarboxylic acid cycle (TCA), and the fatty acid (FA) metabolism, all of them related to bioenergetics. Our results provide new insight into the mechanisms involved in metabolic adaptations triggered by the alterations in kidney mitochondrial proteome during the ON.

14.
Nutrients ; 14(10)2022 May 15.
Article En | MEDLINE | ID: mdl-35631211

Improper hydration habits are commonly disregarded as a risk factor for the development of chronic diseases. Consuming an intake of water below recommendations (underhydration) in addition to the substitution of sugar-sweetened beverages (SSB) for water are habits deeply ingrained in several countries. This behavior is due to voluntary and involuntary dehydration; and because young children are exposed to SSB, the preference for a sweet taste is profoundly implanted in the brain. Underhydration and SSB intake lead to mild hyperosmolarity, which stimulates biologic processes, such as the stimulation of vasopressin and the polyol-fructose pathway, which restore osmolarity to normal but at the expense of the continued activation of these biological systems. Unfortunately, chronic activation of the vasopressin and polyol-fructose pathways has been shown to mediate many diseases, such as obesity, diabetes, metabolic syndrome, chronic kidney disease, and cardiovascular disease. It is therefore urgent that we encourage educational and promotional campaigns that promote the evaluation of personal hydration status, a greater intake of potable water, and a reduction or complete halting of the drinking of SSB.


Cardiovascular Diseases , Drinking Water , Beverages/analysis , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Child , Child, Preschool , Fructose/adverse effects , Habits , Humans
15.
Antioxidants (Basel) ; 11(2)2022 Feb 11.
Article En | MEDLINE | ID: mdl-35204238

Chronic kidney disease (CKD) is a world health problem increasing dramatically. The onset of CKD is driven by several mechanisms; among them, metabolic reprogramming and changes in redox signaling play critical roles in the advancement of inflammation and the subsequent fibrosis, common pathologies observed in all forms of CKD. Extracellular vesicles (EVs) are cell-derived membrane packages strongly associated with cell-cell communication since they transfer several biomolecules that serve as mediators in redox signaling and metabolic reprogramming in the recipient cells. Recent studies suggest that EVs, especially exosomes, the smallest subtype of EVs, play a fundamental role in spreading renal injury in CKD. Therefore, this review summarizes the current information about EVs and their cargos' participation in metabolic reprogramming and mitochondrial impairment in CKD and their role in redox signaling changes. Finally, we analyze the effects of these EV-induced changes in the amplification of inflammatory and fibrotic processes in the progression of CKD. Furthermore, the data suggest that the identification of the signaling pathways involved in the release of EVs and their cargo under pathological renal conditions can allow the identification of new possible targets of injury spread, with the goal of preventing CKD progression.

16.
Life Sci ; 289: 120227, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-34921866

BACKGROUND: Ischemic kidney injury is a common clinical condition resulting from transient interruption of the kidney's normal blood flow, leading to oxidative stress, inflammation, and kidney dysfunction. The ketogenic diet (KD), a low-carbohydrate, high-fat diet that stimulates endogenous ketone body production, has potent antioxidant and anti-inflammatory effects in distinct tissues and might thus protect the kidney against ischemia and reperfusion (IR) injury. MAIN METHODS: Male Wistar rats were fed a KD or a control diet (CD) for three days before analyzing metabolic parameters or testing nephroprotection. We used two different models of kidney IR injury and conducted biochemical, histological, and Western blot analyses at 24 h and two weeks after surgery. KEY FINDINGS: Acute KD feeding caused protein acetylation, liver AMPK activation, and increased resistance to IR-induced kidney injury. At 24 h after IR, rats on KD presented reduced tubular damage and improved kidney functioning compared to rats fed with a CD. KD attenuated oxidative damage (protein nitration, 4-HNE adducts, and 8-OHdG), increased antioxidant defenses (GPx and SOD activity), and reduced inflammatory intermediates (IL6, TNFα, MCP1), p50 NF-κB expression, and cellular infiltration. Also, KD prevented interstitial fibrosis development at two weeks, up-regulation of HSP70, and chronic Klotho deficiency. SIGNIFICANCE: Our findings demonstrate for the first time that short-term KD increases tolerance to experimental kidney ischemia, opening the opportunity for future therapeutic exploration of a dietary preconditioning strategy to convey kidney protection in the clinic.


Diet, Ketogenic , Gene Expression Regulation , Oxidative Stress , Renal Insufficiency, Chronic , Animals , Biomarkers/metabolism , Inflammation/diet therapy , Inflammation/metabolism , Inflammation/pathology , Ischemia/diet therapy , Ischemia/metabolism , Ischemia/pathology , Male , Rats , Rats, Wistar , Renal Insufficiency, Chronic/diet therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology
17.
Am J Nephrol ; 52(10-11): 837-844, 2021.
Article En | MEDLINE | ID: mdl-34673651

Hyperuricemia predicts the development of chronic kidney disease (CKD) and metabolic complications, but whether it has a causal role has been controversial. This is especially true given the 2 recently conducted randomized controlled trials that failed to show a benefit of lowering uric acid in type 1 diabetes-associated CKD and subjects with stage 3-4 CKD. While these studies suggest that use of urate-lowering drugs in unselected patients is unlikely to slow the progression of CKD, there are subsets of subjects with CKD where reducing uric acid synthesis may be beneficial. This may be the case in patients with gout, hyperuricemia (especially associated with increased production), and urate crystalluria. Here, we discuss the evidence and propose that future clinical trials targeting these specific subgroups should be performed.


Hyperuricemia/complications , Renal Insufficiency, Chronic/etiology , Humans , Hyperuricemia/drug therapy , Renal Insufficiency, Chronic/prevention & control
18.
Nat Metab ; 3(9): 1189-1201, 2021 09.
Article En | MEDLINE | ID: mdl-34552272

Umami refers to the savoury taste that is mediated by monosodium glutamate (MSG) and enhanced by inosine monophosphate and other nucleotides. Umami foods have been suggested to increase the risk for obesity and metabolic syndrome but the mechanism is not understood. Here we show that MSG induces obesity, hypothalamic inflammation and central leptin resistance in male mice through the induction of AMP deaminase 2 and purine degradation. Mice lacking AMP deaminase 2 in both hepatocytes and neurons are protected from MSG-induced metabolic syndrome. This protection can be overcome by supplementation with inosine monophosphate, most probably owing to its degradation to uric acid as the effect can be blocked with allopurinol. Thus, umami foods induce obesity and metabolic syndrome by engaging the same purine nucleotide degradation pathway that is also activated by fructose and salt consumption. We suggest that the three tastes-sweet, salt and umami-developed to encourage food intake to facilitate energy storage and survival but drive obesity and diabetes in the setting of excess intake through similar mechanisms.


Metabolic Syndrome/metabolism , Nucleotides/metabolism , Obesity/metabolism , Taste , Uric Acid/metabolism , Animals , Energy Intake/drug effects , Metabolic Syndrome/chemically induced , Mice , Sodium Glutamate/pharmacology
19.
Nutrients ; 13(6)2021 Jun 02.
Article En | MEDLINE | ID: mdl-34199607

BACKGROUND: The consumption of sweetened beverages is associated with increased risk of metabolic syndrome, cardiovascular disease, and type 2 diabetes mellitus. OBJECTIVE: We hypothesized that the metabolic effects of fructose in sugary beverages might be modulated by the speed of ingestion in addition to the overall amount. DESIGN: Thirty healthy subjects free of any disease and medication were recruited into two groups. After overnight fasting, subjects in group 1 drank 500 mL of apple juice over an hour by drinking 125 mL every 15 min, while subjects in group 2 drank 500 mL of apple juice over 5 min. Blood samples were collected at time zero and 15, 30, 60, and 120 min after ingestion to be analyzed for serum glucose, insulin, homeostatic model assessment (HOMA-IR) score, fibroblast growth factor 21, copeptin, osmolarity, sodium, blood urea nitrogen (BUN), lactate, uric acid, and phosphate levels. RESULTS: Serum glucose, insulin, HOMA-IR, fibroblast growth factor 21, copeptin, osmolarity, sodium, BUN, and lactate levels increased following apple juice ingestion. The increases were greater in the fast-drinking group, which were more significant after 15 min and 30 min compared to baseline. The changes in uric acid were not statistically different between the groups. Phosphate levels significantly increased only in the fast-drinking group. CONCLUSION: Fast ingestion of 100% apple juice causes a significantly greater metabolic response, which may be associated with negative long-term outcomes. Our findings suggest that the rate of ingestion must be considered when evaluating the metabolic impacts of sweetened beverage consumption.


Eating , Fructose/adverse effects , Metabolic Syndrome/etiology , Sugar-Sweetened Beverages/adverse effects , Sugars/adverse effects , Adult , Blood Glucose , Diabetes Mellitus, Type 2/complications , Female , Fibroblast Growth Factors , Fruit and Vegetable Juices , Glucose , Glycopeptides , Humans , Insulin , Male , Malus , Osmolar Concentration , Protein Precursors/metabolism , Uric Acid/blood , Young Adult
20.
Free Radic Biol Med ; 172: 358-371, 2021 08 20.
Article En | MEDLINE | ID: mdl-34175439

Renal fibrosis is a well-known mechanism that favors chronic kidney disease (CKD) development in obstructive nephropathy, a significant pathology worldwide. Fibrosis induction involves several pathways, and although mitochondrial alterations have recently emerged as a critical factor that triggers renal damage in the obstructed kidney, the temporal mitochondrial alterations during the fibrotic induction remain unexplored. Therefore, in this work, we evaluated the time course of mitochondrial mass and bioenergetics alterations induced by a unilateral ureteral obstruction (UUO), a widely used model to study the mechanism involved in kidney fibrosis induction and progression. Our results show a marked reduction in mitochondrial oxidative phosphorylation (OXPHOS) in the obstructed kidney on days 7 to 28 of obstruction without significant mitochondrial coupling changes. Besides, we observed that mitochondrial mass was reduced, probably due to decreased biogenesis and mitophagy induction. OXPHOS impairment was associated with decreased mitochondrial biogenesis markers, the peroxisome proliferator-activated receptor γ co-activator-1alpha (PGC-1α), and nuclear respiratory factor 1 (NRF1); and also, with the induction of mitophagy in a PTEN-induced kinase 1 (PINK1) and Parkin independent way. It is concluded that the impairment of OXPHOS capacity may be explained by the reduction in mitochondrial biogenesis and the induction of mitophagy during fibrotic progression.


Ureteral Obstruction , Animals , Fibrosis , Mitochondria , Mitophagy , Organelle Biogenesis , Rats
...